• 人工智能在测试上的应用 at November 23, 2017

    fuzz的时候可以用。。。
    至于什么自己根据需求来生成测试用例之类的就有点扯淡了。。
    但在一些小范围的地方,的确可以使用机器学习来辅助,但这类场景都很少很少

    另外赞同楼上说的:机器学习本质是概率的东西,测试是一个需要评判对错的工作

  • 这种场景的话,openCV就可以实现需求了
    强行硬上SVM,感觉有点舍近求远的感觉

  • 从来都只用xpath的人路过,倒是cssSelector一点都不会

  • 要入门,直接去coursera上学一遍andrew ng的ML入门课程就可以了
    进一步的话,andrew ng还有DL的课程可以让你学校
    另外linear algebra也需要学习呀,网易课堂就可以了。

    从工程应用的角度来说,玩人工智能并不需要太多的数学知识,毕竟大多数时间都在调参什么的
    如果搞学术的话,就必须要学好学习啦

  • 深度学习基础--二分类 at October 23, 2017

    咦,终于有开始分享人工弱智的资料啦~
    期待更多人工弱智在测试流程中的应用干货

  • 缺陷增长模型 at October 17, 2017

    那可不可以换个思路,根据目前的经验,开发出bug的概率都是有一定规律可行的,那么可以通过每个开发过往的bug数量,然后来预测项目的bug数量?

  • 额,个人觉得用CSS和XPATH其实没有太大的区别,如果你要说XPATH效率慢的话,那自动化本身就不是一个讲效率的东西,也没必要为那一两秒的时间去计较。
    在Webdriver的源代码里面,即使是通过By.id去定位某个元素,在源代码里面也会有一个补充的地方,如果通过By.id没有get到元素,那么也会用一次XPATH再查一次。
    至于JD商城的那个case,其实用CSS和XPATH本质都是一样的,都是通过元素属性去定位的,CSS不太懂,但我更多时候用xpath是为了顺便检查一下页面有没有变形之类的,通过这种方法来间接使脚本也做了一次UI的检查。

    但是用CSS和XPATH,这两个东西并没有错,看个人喜好就行。

  • 加油,其实coursera上Andrew Ng的课是最简单的,看完还可以去网易公开课看看Andrew的公开课,属于进阶版
    另外也不要想的那么复杂,机器学习在工程应用方面对数学的要求并没有那么高
    难就难在调参,这是一门玄学

  • 100*100,彩色RGB,所以feature有100*100*3
    训练一次的话 ,因为我在虚拟机上跑的,可能时间不太准确,但是1一分钟之内是肯定可以搞定的

  • 明白你的问题
    其实我在做这个工具的时候,其实我是会在大量数据上做自测的,自测数据量占总样本的20%~30%
    在这里我主要是要提一个思路以及实现,所以在文章里面跳过了cross validation这一步而已,直接训练完就去验证结果了,还有一个特殊点是,我这里的场景其实并不复杂,无非就是选择插件拍照保存输入,有很多细节或者特征是可以固定的,所以可以做到绝对100%全对