数据测试 测试小白对数据测试的疑问

Chai · 2024年04月19日 · 最后由 lazydao 回复于 2024年04月20日 · 3070 次阅读
  1. 刚才在写话题的时候,看到这俩标签。数据测试和大数据测试不一样吗??
  2. 想了解(暂时只是了解)数据/大数据测试平常的工作内容是什么呢?对 python 能力要求高吗?
  3. 作为数据/大数据测试,需要培养的能力是什么呢?

感谢各位在周末抽出时间答疑解惑👍

共收到 4 条回复 时间 点赞

作为一个外行的理解
1.数据指的是具体数据,大数据指的是业务/行业
2.数据无处不在,大数据有对 flink/kafka/流计算等数据侧的技术要求
3.数据无处步骤,大数据同上↑
可以看下大佬的帖子@ycwdaaaa
也可以站内搜索:https://testerhome.com/search?q=%E5%A4%A7%E6%95%B0%E6%8D%AE

数据测试和大数据测试在概念上有一定的关联性和交集,但它们各自的侧重点和适用场景有所不同。以下是两者的主要区别:
数据测试
数据测试通常侧重于对数据本身的验证和质量保证,其核心目标是确保数据的准确、完整、一致、有效和合规性。它适用于各种规模的数据集,无论数据量大小,只要涉及对数据质量的检查和评估,都可以进行数据测试。数据测试主要包括以下方面:
数据完整性:检查数据是否齐全,是否存在缺失值或不完整的记录。
数据一致性:确保不同数据源、不同时间点或不同业务流程产生的数据相互之间没有冲突或矛盾。
数据准确性:验证数据值是否正确,是否符合预期的业务规则或参照标准。
数据有效性:检查数据是否符合预定义的格式、范围或约束条件,是否存在无效或非法数据。
数据一致性:确保数据在迁移、转换或集成过程中保持一致,没有丢失或错误。
数据合规性:评估数据是否符合行业规定、法律法规或内部政策要求,如数据隐私保护、数据脱敏等。
数据测试不仅应用于传统的软件开发项目,也广泛适用于数据分析、数据仓库、数据迁移、数据集成、数据治理等各类数据相关的应用场景。
大数据测试
大数据测试则是专门针对使用大数据技术和平台的系统的测试活动。它不仅包含了对数据本身的质量测试,更重要的是针对大数据环境特有的技术和架构特性进行验证。大数据测试通常面对的是大规模、高复杂性、高速变化的数据集,以及分布式计算、流处理、实时分析等高级数据处理技术。大数据测试的核心内容包括:
数据规模测试:验证系统在处理海量数据时的性能、稳定性和可扩展性。
大数据技术栈测试:测试 Hadoop、Spark、Flink 等大数据框架,以及相关的数据存储(如 HDFS、NoSQL 数据库)、数据处理(如 MapReduce、Spark SQL)、数据查询(如 Hive、Presto)等组件的功能、性能和兼容性。
大数据应用测试:针对基于大数据技术构建的特定业务应用(如推荐系统、风险模型、用户行为分析等)进行功能、性能、安全、易用性等方面的测试。
大数据分析结果验证:对比大数据分析结果与预期输出或已知基准,确保分析结论的准确性和可靠性。
数据流测试:针对实时数据流处理管道进行端到端的测试,确保数据从产生、传输、处理到消费各环节的正确性和时效性。
大数据系统集成测试:验证大数据系统与其他系统(如传统数据库、API 服务、前端应用等)的接口集成和数据交互是否正常。
总结来说,数据测试主要关注数据的质量属性,适用于所有与数据相关的场景;而大数据测试则不仅包含数据测试的内容,还特别关注大数据系统的特有技术和架构,以及在大规模数据环境下的特定测试需求。大数据测试是数据测试的一个子集,且具有更高的复杂性和专业性要求。

问题 3:

作为数据或大数据测试工程师,需要培养一系列专业技能和能力以应对复杂的测试任务和不断发展的技术环境。以下是一些关键能力的总结:

  1. 基础技术知识 计算机科学基础:理解数据结构、算法、计算机网络、操作系统等基础知识,为深入理解大数据系统的工作原理奠定基础。 数据库知识:熟悉关系型数据库(如 MySQL、Oracle)和 NoSQL 数据库(如 MongoDB、Cassandra)的设计、查询优化、备份恢复等操作。 编程技能:掌握至少一种主流编程语言(如 Python、Java、Scala、Go),用于编写测试脚本、自动化测试工具和数据分析代码。 Linux 操作:熟练使用 Linux 命令行进行系统管理和故障排查,因为大数据环境通常基于 Linux 操作系统。
  2. 大数据技术栈 大数据框架:深入理解 Hadoop、Spark、Flink 等大数据处理框架的工作机制、配置、API 使用和最佳实践。 数据存储系统:熟悉分布式文件系统(如 HDFS)、列式存储(如 Parquet)、键值存储(如 HBase)等大数据存储技术的特点和应用场景。 数据处理工具:掌握 ETL(提取、转换、加载)工具(如 Apache Nifi、Airflow)、批处理(如 MapReduce)、实时流处理(如 Kafka Streams、Beam)等技术。 资源管理系统:理解 YARN、Mesos 等集群资源调度和管理工具的作用和配置。
  3. 数据质量评估 数据验证方法:掌握数据完整性、一致性、准确性、时效性等质量维度的验证技巧,以及如何制定和实施数据质量规则。 数据分析技能:运用统计学知识和数据分析工具(如 Pandas、SQL、BI 工具)对数据进行探索性分析,发现潜在问题和异常模式。 数据清洗与预处理:了解如何处理缺失值、异常值、重复数据等问题,以及数据标准化、归一化等预处理方法。
  4. 测试方法与策略 测试设计:根据大数据项目的特性和需求,设计合理的测试用例,包括功能测试、性能测试、压力测试、稳定性测试等。 测试自动化:掌握使用测试框架(如 JUnit、PyTest)、持续集成工具(如 Jenkins、GitLab CI/CD)和大数据测试工具(如 Hadoop Test, Apache Beam ValidatesRunner)进行自动化测试。 性能调优:理解影响大数据系统性能的关键因素,如数据分布、并行度设置、内存管理等,以及如何进行性能监控、分析和优化。
  5. 软技能 沟通协作:与开发、数据工程师、业务分析师等多方密切沟通,理解业务需求,协调测试资源,共同解决问题。 文档撰写:编写清晰、规范的测试计划、测试报告、缺陷报告等文档,确保信息的有效传递。 学习能力:大数据领域技术更新迅速,需保持持续学习的态度,跟踪新技术、新工具的发展动态,不断提升自身技术水平。
  6. 特定领域知识 特定行业知识:根据所处行业(如金融、电商、医疗等),理解行业特定的数据标准、法规要求和业务逻辑,以便进行针对性测试。 数据安全与隐私:熟悉数据加密、访问控制、数据脱敏等技术,确保数据处理过程符合数据保护法规(如 GDPR、CCPA)。 通过培养以上能力,数据/大数据测试工程师能够有效地对大数据系统进行全面、深入的测试,确保其在大规模数据环境下高效、稳定、准确地运行,并满足业务需求与合规要求。
  1. 数据测试通常指对具体的数据进行验证,如数据库内容的准确性、完整性等,而大数据测试则更关注于处理大规模数据的系统和过程,比如性能测试、数据处理流程、数据存储和查询优化等。

  2. 数据/大数据测试工作内容可能包括但不限于:

    • 设计和执行数据质量检查。
    • 性能测试以保证数据处理的效率。
    • 确保数据处理流程的准确性。
    • 验证数据存储和查询性能。

对 Python 的要求取决于具体的工作需求,但是 Python 通常是数据处理和自动化测试中常用的语言。

  1. 作为数据/大数据测试工程师,需要培养的能力包括:
    • 对数据敏感,能够理解和分析数据模型和数据流程。
    • 编程和脚本能力,用于写自动化测试脚本。
    • 理解大数据处理框架和工具,如 Hadoop、Spark 等。
    • 问题解决能力,特别是在排查数据处理过程中出现的问题。
    • 了解并应用数据质量标准和指标。
需要 登录 后方可回复, 如果你还没有账号请点击这里 注册