#!/usr/bing/env python
# -*- coding: utf-8 -*-
# @author: xxx
# @date : 2018/9/27
# coding : utf-8
from PIL import Image
class CompareImage():
def calculate(self, image1, image2):
g = image1.histogram()
s = image2.histogram()
assert len(g) == len(s), "error"
data = []
for index in range(0, len(g)):
if g[index] != s[index]:
data.append(1 - abs(g[index] - s[index]) / max(g[index], s[index]))
else:
data.append(1)
return sum(data) / len(g)
def split_image(self, image, part_size):
pw, ph = part_size
w, h = image.size
sub_image_list = []
assert w % pw == h % ph == 0, "error"
for i in range(0, w, pw):
for j in range(0, h, ph):
sub_image = image.crop((i, j, i + pw, j + ph)).copy()
sub_image_list.append(sub_image)
return sub_image_list
def compare_image(self, file_image1, file_image2, size=(256, 256), part_size=(64, 64)):
'''
'file_image1'和'file_image2'是传入的文件路径
可以通过'Image.open(path)'创建'image1' 和 'image2' Image 对象.
'size' 重新将 image 对象的尺寸进行重置,默认大小为256 * 256 .
'part_size' 定义了分割图片的大小.默认大小为64*64 .
返回值是 'image1' 和 'image2'对比后的相似度,相似度越高,图片越接近,达到1.0说明图片完全相同。
'''
image1 = Image.open(file_image1)
image2 = Image.open(file_image2)
img1 = image1.resize(size).convert("RGB")
sub_image1 = self.split_image(img1, part_size)
img2 = image2.resize(size).convert("RGB")
sub_image2 = self.split_image(img2, part_size)
sub_data = 0
for im1, im2 in zip(sub_image1, sub_image2):
sub_data += self.calculate(im1, im2)
x = size[0] / part_size[0]
y = size[1] / part_size[1]
pre = round((sub_data / (x * y)), 6)
# print(str(pre * 100) + '%')
print('Compare the image result is: ' + str(pre))
return pre
compare_image = CompareImage()
compare_image.compare_image("1.jpg", "2.jpg")
识别的图片:
运行结果:
Compare the image result is: 0.379042
参考:https://www.cnblogs.com/wozijisun/p/6478388.html
原作者 github:https://github.com/MashiMaroLjc/Learn-to-identify-similar-images