本文记录如何通过拓扑排序,实现循环依赖判断
一般提到循环依赖,首先想到的就是 Spring 框架提供的 Bean 的循环依赖检测,相关文档可参考:
本文方案脱离 Spring Bean 的管理,通过算法实现的方式,完成对象循环依赖的判断,涉及的知识点包括:邻接矩阵图、拓扑排序、循环依赖。本文会着重讲解技术实现,具体算法原理不再复述
这里要总结的邻接矩阵是关于图的邻接矩阵;图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图;一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息;
图分为有向图和无向图,其对应的邻接矩阵也不相同,无向图的邻接矩阵是一个对称矩阵,就是一个对称的二位数组,a[i][j] = a[j][i];
邻接矩阵可以清楚的知道图的任意两个顶点是否有边;方便计算任意顶点的度(包括有向图的出度和入度);可以直观的看出任意顶点的邻接点;
本案例中,有向邻接矩阵图为进行拓扑排序的必要条件之一,其次为有向邻接矩阵图每个顶点的入度
vexs[MAXVEX] 这是顶点表;
arc[MAXVEX][MAXVEX] 这是邻接矩阵图,也是存储每条边信息的二维数组。数组的索引是边的两个顶点,数组的数据是边的权值;
numVertexes, numEdges 分别为图的顶点数和边数。
在有向图中,箭头是具有方向的,从一个顶点指向另一个顶点,这样一来,每个顶点被指向的箭头个数,就是它的入度。从这个顶点指出去的箭头个数,就是它的出度
邻接矩阵的行号即代表箭头的出发结点,列号是箭头的指向结点,所以矩阵中同一行为 1 的表示有从第 i 个结点指向第 j 个结点这样一条边,而在同列为 1 就代表第 j 个结点被第 i 个结点指向,因此要求顶点的入度或出度,只需要判断同列为 1 的个数或同行为 1 的个数
拓扑排序的要素:
1.有向无环图;
2.序列里的每一个点只能出现一次;
3.任何一对 u 和 v ,u 总在 v 之前(这里的两个字母分别表示的是一条线段的两个端点,u 表示起点,v 表示终点);
根据拓扑排序的要素,可通过其有向无环来判断对象依赖是否存在循环。若对象组成的图可完成拓扑排序,则该对象图不存在环,即对象间不存在循环依赖。
拓扑排序除了通过有向邻接矩阵图实现外,还可以通过深度优先搜索(DFS)来实现。本案例中仅讲解前者。
简单解释如下,若存在两个对象,若 A 创建需要 B,B 创建需要 A,这两个对象间互相依赖,就构成了最简单的循环依赖关系。
@Builder
@NoArgsConstructor
@AllArgsConstructor
@Getter
@Setter
@ToString
public class RelationVo implements Serializable {
/**
* 唯一标识
*/
private String uniqueKey;
/**
* 关联唯一标识集合
*/
private List combinedUniqueKeys;
}
/**
* 将List集合转换为邻接矩阵图的二维数组形式
*
* @param sourceList
* @return
*/
public static int[][] listToAdjacencyMatrixDiagram(List sourceList) {
List distinctRelationVoList = new ArrayList(sourceList);
List keyCollect = distinctRelationVoList.stream().map(RelationVo::getUniqueKey).collect(Collectors.toList());
for (RelationVo vo : sourceList) {
vo.getCombinedUniqueKeys().forEach(child -> {
if (!keyCollect.contains(child)) {
// 若叶子节点不在集合中,补充List集合中单独叶子节点,目的是完成提供邻接矩阵图计算的入参
keyCollect.add(child);
RelationVo build = RelationVo.builder().uniqueKey(child).build();
distinctRelationVoList.add(build);
}
});
}
// 顶点数:对象中出现的全部元素总数
int vertexNum = keyCollect.size();
/*
* 初始化邻接矩阵图的边的二维数组,1表示有边 0表示无边 权重均为1
* 其中数组下标为边的两个顶点,数组值为对象边的权值(权值=是否有边*权重)
*/
int[][] edges = new int[vertexNum][vertexNum];
// 计算邻接矩阵图
for (int i = 0; i < vertexNum; i++) {
RelationVo colVo = distinctRelationVoList.get(i);
List colUniqueKeys = colVo.getCombinedUniqueKeys();
for (int j = 0; j < vertexNum; j++) {
RelationVo rowVo = distinctRelationVoList.get(j);
String rowVertex = rowVo.getUniqueKey();
if (CollUtil.isNotEmpty(colUniqueKeys)) {
if (colUniqueKeys.contains(rowVertex)) {
edges[i][j] = 1;
} else {
edges[i][j] = 0;
}
}
}
}
return edges;
}
/**
* 返回给出图每个顶点的入度值
*
* @param adjMatrix 给出图的邻接矩阵值
* @return
*/
public static int[] getSource(int[][] adjMatrix) {
int len = adjMatrix[0].length;
int[] source = new int[len];
for (int i = 0; i < len; i++) {
// 若邻接矩阵中第i列含有m个1,则在该列的节点就包含m个入度,即source[i] = m
int count = 0;
for (int j = 0; j < len; j++) {
if (adjMatrix[j][i] == 1) {
count++;
}
}
source[i] = count;
}
return source;
}
/**
* 拓扑排序,返回给出图的拓扑排序序列
* 拓扑排序基本思想:
* 方法1:基于减治法:寻找图中入度为0的顶点作为即将遍历的顶点,遍历完后,将此顶点从图中删除
* 若结果集长度等于图的顶点数,说明无环;若小于图的顶点数,说明存在环
*
* @param adjMatrix 给出图的邻接矩阵值
* @param source 给出图的每个顶点的入度值
* @return
*/
public static List topologySort(int[][] adjMatrix, int[] source) {
// 给出图的顶点个数
int len = source.length;
// 定义最终返回路径字符数组
List result = new ArrayList(len);
// 获取入度为0的顶点下标
int vertexFound = findInDegreeZero(source);
while (vertexFound != -1) {
result.add(vertexFound);
// 代表第i个顶点已被遍历
source[vertexFound] = -1;
for (int j = 0; j < adjMatrix[0].length; j++) {
if (adjMatrix[vertexFound][j] == 1) {
// 第j个顶点的入度减1
source[j] -= 1;
}
}
vertexFound = findInDegreeZero(source);
}
//输出拓扑排序的结果
return result;
}
/**
* 找到入度为0的点,如果存在入度为0的点,则返回这个点;如果不存在,则返回-1
*
* @param source 给出图的每个顶点的入度值
* @return
*/
public static int findInDegreeZero(int[] source) {
for (int i = 0; i < source.length; i++) {
if (source[i] == 0) {
return i;
}
}
return -1;
}
/**
* 检查集合是否存在循环依赖
*
* @param itemList
*/
public static void checkCircularDependency(List itemList) throws Exception {
if (CollUtil.isEmpty(itemList)) {
return;
}
// 计算邻接矩阵图的二维数组
int[][] edges = listToAdjacencyMatrixDiagram(itemList);
// 计算邻接矩阵图每个顶点的入度值
int[] source = getSource(edges);
// 拓扑排序得到拓扑序列
List topologySort = topologySort(edges, source);
if (source.length == topologySort.size()) {
// 无循环依赖
return;
} else {
// 序列集合与顶点集合大小不一致,存在循环依赖
throw new Exception("当前险种关系信息存在循环依赖,请检查");
}
}
示例JSON Array结构(可完成拓扑排序):
[{
"uniqueKey":"A",
"combinedUniqueKeys":[
"C",
"D",
"E"
]
},
{
"uniqueKey":"B",
"combinedUniqueKeys":[
"D",
"E"
]
},
{
"uniqueKey":"D",
"combinedUniqueKeys":[
"C"
]
}
]
示例JSON Array结构(不可完成拓扑排序):
[{
"uniqueKey":"A",
"combinedUniqueKeys":[
"C",
"D",
"E"
]
},
{
"uniqueKey":"B",
"combinedUniqueKeys":[
"D",
"E"
]
},
{
"uniqueKey":"D",
"combinedUniqueKeys":[
"C"
]
},
{
"uniqueKey":"C",
"combinedUniqueKeys":[
"B"
]
}
]
@Slf4j
public class CircularDependencyTest {
/**
* 针对集合信息判断该集合是否存在循环依赖
*/
@Test
void testCircularDependencyList() throws Exception {
String paramInfo = "[{\"uniqueKey\":\"A\",\"combinedUniqueKeys\":[\"C\",\"D\",\"E\"]},{\"uniqueKey\":\"B\",\"combinedUniqueKeys\":[\"D\",\"E\"]},{\"uniqueKey\":\"D\",\"combinedUniqueKeys\":[\"C\"]}]";
// 序列化
List list = JSONArray.parseArray(paramInfo, RelationVo.class);
TopologicalSortingUtil.checkCircularDependency(list);
}
}
作者:京东保险 侯亚东
来源:京东云开发者社区 转载请注明来源