新手区 学习笔记 2-深入浅出索引

Hxyaaaaaaaaaaaa · 2023年11月02日 · 2262 次阅读

1.索引的常见模型

哈希表、有序数组和搜索树

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的值即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表再进行遍历,哈希表这种结构适用于只有等值查询的场景

有序数组在等值查询和范围查询场景中的性能很优秀,只适用于静态存储引擎

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。

2.基于主键索引和普通索引的查询有什么区别?

基于非主键索引的查询需要多扫描一棵索引树。我们在应用中应该尽量使用主键查询。

如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。

主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

数据库引擎可用的数据结构, InnoDB 采用的 B+ 树结构,B+ 树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数。

数据库索引包括了覆盖索引、前缀索引、索引下推。你可以看到,在满足语句需求的情况下, 尽量少地访问资源是数据库设计的重要原则之一。我们在使用数据库的时候,尤其是在设计表结构时,也要以减少资源消耗作为目标。

覆盖索引 -- 如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经 “覆盖了” 我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

最左前缀--B+ 树这种索引结构,可以利用索引的 “最左前缀”,来定位记录。索引项是按照索引定义里面出现的字段顺序排序的。不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符。

索引下推--MySQL 5.6 引入的索引下推优化, 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

暂无回复。
需要 登录 后方可回复, 如果你还没有账号请点击这里 注册