京东质量社区 一种读取亿级 doris 数据库的方法 | 京东云技术团队

京东云开发者 · 2023年06月27日 · 2608 次阅读
  1. 工作中,常常需要将线上 doris 同步至集市。读取 doris 数据同读取常规 mysql 基本相同。如果数据行小于千万,比较简单的方式直接单节点连接、读取和存储。Python 示例如下:
def get_data(sql,host='',port=2000,user='',password='',db=''):
    # 支持doris
    import pymysql
    connect = pymysql.connect(host=host,port=port,user=user,password=password,db=db,charset='utf8')
    cursor = connect.cursor()
    cursor.execute('SET query_timeout = 216000;') #单位秒
    cursor.execute(sql)
    result = cursor.fetchall()
    for row in result:
        pass # 存储格式可以自行控制 
    cursor.close()
    connect.close()
    return result
  1. 如果数据量比较大,超过千万,甚至过亿,单节点读取会遇到超时以及时效过低的问题。可以使用 spark.read.jdbc 分布式多节点并发读取。spark 读取支持两种方式。

主要参数介绍:

read.jdbc(url=url,table=remote_table,column='item_sku_id',numPartitions=50,lowerBound=lowerBound, upperBound=upperBound,properties=prop)

url:格式如'jdbc:mysql://**.jd.com:2000/数据库名?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&failOverReadOnly=false&zeroDateTimeBehavior=convertToNull&useSSL=false&serverTimezone=Asia/Shanghai'

table:可以是表名,也可以是查询 sql(也即支持条件查询),如果是 sql,格式如"(SELECT count(*) sku FROM rule_price_result where dt='2023-05-10') AS tmp"

numPartitions:控制并发节点个数

lowerBound+upperBound 和 properties 二选一,控制每个节点读取的数据范围。

lowerBound+upperBound 方式:指定读取最低和最高值,spark 会结合分区个数和最低最高边界机械做分割。

如果数据分布有倾斜,可以通过 predicates 列表自行控制范围。

作者:京东零售 赵奇猛

来源:京东云开发者社区

暂无回复。
需要 登录 后方可回复, 如果你还没有账号请点击这里 注册