京东质量社区 性能测试监控指标及分析调优 | 京东云技术团队

京东云开发者 · 2023年05月26日 · 最后由 京东云开发者 回复于 2023年10月19日 · 6402 次阅读

一、哪些因素会成为系统的瓶颈?

1、CPU,如果存在大量的计算,他们会长时间不间断的占用 CPU 资源,导致其他资源无法争夺到 CPU 而响应缓慢,从而带来系统性能问题,例如频繁的 FullGC,以及多线程造成的上下文频繁的切换,都会导致 CPU 繁忙,一般情况下 CPU 使用率<75% 比较合适。

2、内存,Java 内存一般是通过 jvm 内存进行分配的,主要是用 jvm 中堆内存来存储 Java 创建的对象。内存的读写速度非常快,但是内存空间又是有限的,当内存空间被占满,对象无法回收时,就会导致内存溢出或内存泄漏。

3、磁盘 I/O,磁盘的存储空间要比内存存储空间大很多,但是磁盘的读写速度比内存慢,虽然现在引入 SSD 固态硬盘,但是还是无法跟内存速度相比。

4、网络,带宽的大小,会对传输数据有很大影响,当并发量增加时,网络很容易就会成为瓶颈。

5、异常,Java 程序,抛出异常,要对异常进行捕获,这个过程要消耗性能,如果在高并发的情况下,持续进行异常处理,系统的性能会受影响。

6、数据库,数据库的操作一般涉及磁盘 I/O 的读写,大量的数据库读写操作,会导致磁盘 I/O 性能瓶颈,进而导致数据库操作延迟。

7、当在并发编程的时候,经常会用多线程操作同一个资源,这个时候为了保证数据的原子性,就要使用到锁,锁的使用会带来上下文切换,从而带来性能开销,在 JDK1.6 之后新增了偏向锁、自旋锁、轻量级锁、锁粗化、锁消除。

二、哪些指标做为衡量系统的性能

1、RT 响应时间,包括如下

1.1 数据库响应时间,即数据库操作的时间

1.2 服务端响应时间,服务端包括 Nginx 分发的请求所消耗的时间及服务端程序执行所消耗的时间。

1.3 网络响应时间,网络传输,网络硬件需要对传输的请求进行解析所消耗的时间

1.4 客户端响应时间,一般 Web、App 客户端,消耗时间可以忽略不计,但是如果客户端存在大量的逻辑处理,消耗的时间有能能就会变长。

2、TPS 吞吐量

2.1 磁盘吞吐量

IOPS(Input/Output Per Second)每秒的输入输出量,这种是单位时间内系统能处理的 I/O 请求数量,I/O 请求通常为读或写数据操作请求,关注随机读写性能,适用于随机读写频繁的应用,如小文件存储,邮件服务器。
数据吞吐量,这种是单位时间可以传输的数据量,对于大量顺序读写频繁的应用,传输大量连续数据,例如视频编辑。

2.2 网络吞吐量

指网络传输时没有丢帧的情况下,设备能够接受的最大数据速率。网络吞吐量不仅跟带宽有关系,还跟 CPU 处理能力、网卡、防火墙、以及 I/O 等紧密联系,吞吐量的大小由网卡的处理能力、内部程序算法以及带宽大小决定。

3、资源使用率

3.1 CPU 使用率,首先可以先了解 CPU 的基本信息,包括物理 CPU 的个数、单个 CPU 的核数,然后可以通过命令查看使用率,vmstat、mpstat、top

3.2 内存使用率,free -m、vmstat、top

3.3 磁盘 I/O, iostat、 iotop、

3.4 网络 I/O,netstat、ifconfig、tcpstat、

三、性能测试注意的问题

1、我们在做性能测试的时候,系统的运行会越来越快,后面的访问速度比我们第一次访问的速度快了好几倍,这是因为 Java 语言编译的顺序是,.java 文件先编译为.class 文件,然后通过解释器将.class 的字节码转换成本地机器码后,才能运行。为了节约内存和执行效率,代码最初被执行时,解释器会率先解释执行这段代码。随着代码被执行的次数增多,虚拟机发现某个方法或代码运行的特别频繁,就被认定为热点代码(Hot Spot Code)。为了提高热点代码的执行效率,在运行时虚拟机将会通过即时编译器(JIT)把这些代码编译成为本地平台相关的机器码,然后储存在内存中,之后每次运行代码时,直接从内存中获取。这样就会导致第一次系统运行慢,后面访问的速度快几倍。

2、在做性能测试的时候,每次测试处理的数据集都是一样的,但是结果却有差异,这是因为测试时,伴随着很多不稳定因素,比如机器其他进程的影响、网络波动以及每个阶段 JVM 垃圾回收的不同等。我们可以通过多次测试,将测试结果求平均,只要保证平均值在合理范围之内,并且波动不是很大,这种情况,性能测试就算通过。

四、定位性能问题的时候,可以使用自下而上的策略分析排查

当我们进行压测之后,我们会输出一份性能测试报告,其中包括,RT、TPS、TP99,被压服务器的 CPU、内存、I/O,以及 JVM 的 GC 频率。通过这些指标可以发现性能瓶颈。我们可以采用自下而上的方式进行分析。

1、首先从操作系统层面,查看系统的 CPU、内存、I/O、网络的使用率是否异常,再通过命令查找异常日志,最后通过日志分析,找到导致瓶颈的问原因。

2、还可以从 Java 应用的 JVM 层面,查看 JVM 的垃圾回收频率以及内存分配情况是否存在异常,分析垃圾回收日志,找到导致瓶颈的原因。

3、如果系统和 JVM 层面都没有出现异常情况,然后可以从应用服务业务层查看是否存在性能瓶颈,例如,Java 编程问题,读写数据库瓶颈等。

五、优化性能问题的时候,可以使用自上而下的策略进行优化

整体的调优顺序,我们可以从业务调优到编程调优,最后再到系统调优

1、应用层调优

首先是优化代码,代码问题往往会因为消耗系统资源而暴漏出来,例如代码导致内存溢出,使 JVM 内存用完,而发生频繁的 FullGC,导致 CPU 偏高。

其次是优化设计,主要是优化业务层和中间件层代码,例如可以采用代理模式,放在频繁调用的创建对象的场景里,共享一个创建对象,减少创建对象的消耗。

再次是优化算法,选择合适的算法降低时间复杂度。

2、中间件调优

MySQL 调优

1)、表结构与索引优化。

主要是对数据库设计、表结构设计以及索引设置维度进行的优化,设计表结构的时候,考虑数据库的水平与垂直的拓展能力,提前规划好将来数据量、读写量的增长,规划好分库分表方案。对字段选择合适的数据类型,优先选用较小的数据结构。

2)、SQL 语句优化。

主要是对 SQL 语句进行的优化,使用 explain 来查看执行计划,来查看是否使用了索引,使用了哪些索引。也可以使用 Profile 命令分析语句执行过程中各个分步的耗时。

3)、MySQL 参数优化。

主要是对 MySQL 服务的配置进行优化,例如连接数的管理,对索引缓存、查询缓存、排序缓存等各种缓存大小进行优化

4)、硬件及系统配置。

对硬件设备和操作系统设置进行优化,例如调整操作系统参数、禁用 swap、增加内存、升级固态硬盘。

3、系统调优

首先是操作系统调优,Linux 操作的内核参数设置可以进行调优,已达到提供高性能的目的。\
其次,JVM 调优,设置合理的 JVM 内存空间,以及垃圾回收算法来提高性能,例如,如果业务逻辑会创建大对象,我们就可以设置,将大的对象直接放到老年代中,这样可以减少年轻代频发发生 YongGC,减少 CPU 的占用时间。

4、调优的策略

首先是时间换取空间,有的时候系统对查询速度要求不高,对存储空间要求较高,这个时候我们可以考虑用时间换取空间。

其次是空间换取时间,用存储空间提升访问速度,典型的就是 MySQL 的分库分表策略,MySQL 表单数据存储千万以上的时候,读写性能就会下降,这个时候我们可以将数据进行拆分,以达到查询的时候,每个表的数据是少量的,以达到提升性能的目的。

5、兜底策略

系统调优后,仍然还会存在性能问题,这个时候我们需要有兜底策略,
首先是限流,对系统的入口设置最大访问限制,同时采取断熔措施,返回没有成功的请求。
其次是横向扩容,当访问量超过某一个阈值时,系统可以自动横向增加服务。

作者:京东健康 牛金亮

内容来源:京东云开发者社区

共收到 5 条回复 时间 点赞

nice get

仅楼主可见
3楼 已删除

我是软件绿色联盟公众号,看到您这篇文章写的好,想转载一下。可以转载一下么?

liuxiaobo 回复

可以,请注明作者(团队)、来源等

liuxiaobo 回复

可以,请注明作者(团队)、来源等

需要 登录 后方可回复, 如果你还没有账号请点击这里 注册