大数据测试 零基础学习大数据测试数据仓库实践

测试小书童 · 2022年01月06日 · 最后由 兔子🐰 回复于 2022年06月01日 · 6308 次阅读

说明

数据仓库实例

  • 在本节中,我们通过一个简单的实例介绍数据仓库对数据的处理过程。假设有一家连锁超市,它有多家分店。每一个分店都有很多种类的商品,包括日用品、肉类、冷冻食品、烘焙食品和花卉等。所有产品在整个连锁超市环境下有一个唯一的产品编号。图 3-15 为一张顾客结账清单。

image-20211214170515688

  • 经过一段时间的商品销售后,连锁超市积累了大量销售数据,如下图所示,超市分店具有分店名、分店地址 和开店时间属性,商品有商品类别、商品价格、唯一编号和生产地址属性。当然,地址可以进一步拆分为省、市等。

image-20211214170552603

  • 假设对商品 A 进行促销,如发放代金券、降价等,现在分析促销活动对商品 A 销售量的,为了简便,本实例统计超市分店中商品 A 每天的销售量、到店消费人数和购买商品 A 的消费者的比例
  • 我们在数据仓的设计与构建文章中的数据仓库的设计中提到过,数据仓库分为数据接入层、数据明细层、数据汇总层和数据集市等。数据接入层负责将业务系统中的商品相关销售数据导入;数据明细层负责对数据接入层的数据进行预处理,过滤"脏” 数据等;数据汇总层将数据按照订单进行汇总;数据集市层负责聚合计算相应的指标。
  • 由于要对商品在时间、地点等维度的指标进行汇总计算,因此,我们在数据仓库层使用维度建模方式建表,(我们在数据仓的设计与构建中的数据仓库建模方法也说过相应概念)。显然,我们对日期、超市分店 (地址) 和商品等维度比较感兴趣。图 3-17 所示为商品的维度模型实际的建模过程比这复杂。以日期维度为例,在实际建模中,时间维度表一般会会有当天是一个月中的哪一天,当天是一年中的哪天,当前周是一年中的哪周,当前季度是年中哪季度,以及时间视计算肭表示等字段,方便将销售指标在各种时间点上进行同比。

image-20211214172404147

  • 假设超市业务系统中的销售数据是以实际购物清单拆分的形式存放,即在购物清单中,含有品、商品价格和交易时间 (清单创建时间) 等信息,则超市业务系统的数据库中会有如图下的表关系

image-20211214172637088

  • 由于商品信息表和超市分店信息表的数据量不大,且基本无改动,因此可以选择全量更新的方式将数据加载到数据仓库。而来自各超市分店的商品销售清单的数据量很大,且每天会有新插入的数据记录,因此,在将数据加载到数据仓库时,可以选择增量加载方式

  • 在本实例中,对于数据仓库的存储,采用 HDFS 和 Hive,在 ETL 过程中,使用 HiveQL。图 3-19 为各级数据表的关系。

image-20211215100757274

数据接入层 ODS

创建接入层的表

首先,在 Hive 中,创建数据库接入层对应的表,代码如下:

# 切换到hadoop用户
su hadoop
# 进入到hive
hive

-- 创建超市分店信息表
DROP TABLE IF EXISTS ods_market_info;
create table ods_market_info(
market_id string comment '超市分店编号',
market_address string comment '超市分店地址',
start_time string comment '有效期起始时间',
end_time string comment '有效期终止时间',
market_name string comment '超市分店名称',
create_time string comment '创建时间',
update_time string comment '更新时间'
)
partitioned by(dt string)
row format delimited fields terminated by '\t';


--创建商品信息表
DROP TABLE IF EXISTS ods_product_info;
CREATE TABLE ods_product_info(
product_id int comment '商品id',
type_name string comment '类别名',
supplier_phone string comment '供应商手机号',
supplier_address string comment '供应商地址',
product_price string comment '商品价格',
product_desc string comment '商品说明',
start_time string comment '有效期起始时间',
end_time string comment '有效期终止时间',
product_name string comment '商品名称',
create_time string comment '创建时间',
update_time string comment '更新时间'
) comment '商品信息表'
partitioned by(dt string)
row format delimited fields terminated by '\t';


--创建清单记录表
DROP TABLE IF EXISTS ods_sale_info;
CREATE TABLE ods_sale_info( 
order_id string comment '清单号',
order_status string comment '清单状态', 
market_id string comment' 超市分店编号',
product_num int comment '商品数量',
product_id int comment '商品id',
create_time string comment '创建时间',
update_time string comment '更新时间'
) comment '清单记录表'
PARTITIONED BY (dt string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

# 查看到新建成功的表
hive> show tables;
OK
course
ods_market_info
ods_product_info
ods_sale_info
stu
stu1
Time taken: 0.026 seconds, Fetched: 6 row(s)

准备业务数据

  • 批量造 mysql 表的数据,采用存储过程的方式

  • mysql 中创建业务关系表,product_info(商品信息表)、market_info(超市分店信息表)、sale_info(清单记录表)

mysql -uroot -p 
use hive

-- 创建商品信息表,以id为主键
create table product_info(
id int(10) not null auto_increment primary key,
product_id int comment '商品id',
type_name varchar(100) comment '类别名',
supplier_phone varchar(100) comment '供应商手机号',
supplier_address varchar(100) comment '供应商地址',
product_price varchar(100) comment '商品价格',
product_desc varchar(100) comment '商品说明',
start_time varchar(100) comment '有效期起始时间',
end_time varchar(100) comment '有效期终止时间',
product_name varchar(100) comment '商品名称',
create_time varchar(100) comment '创建时间',
update_time varchar(100) comment '更新时间'
) engine=innodb default charset=utf8;


-- 创建超市分店信息表
create table market_info(
id int(10) not null auto_increment primary key,
market_id varchar(100) comment '超市分店编号',
market_address varchar(100) comment '超市分店地址',
start_time varchar(100) comment '有效期起始时间',
end_time varchar(100) comment '有效期终止时间',
market_name varchar(100) comment '超市分店名称',
create_time varchar(100) comment '创建时间',
update_time varchar(100) comment '更新时间'
) engine=innodb default charset=utf8;

--创建清单记录表
create table sale_info( 
id int(10) not null auto_increment primary key,
order_id varchar(100) comment '清单号',
order_status varchar(100) comment '清单状态', 
market_id varchar(100) comment' 超市分店编号',
product_num int comment '商品数量',
product_id int comment '商品id',
create_time varchar(100) comment '创建时间',
update_time varchar(100) comment '更新时间'
) engine=innodb default charset=utf8;


# 查看到各个新建的三个表
mysql> show tables;



| market_info                   |
| product_info                  |
| sale_info                     |
+-------------------------------+
77 rows in set (0.01 sec)

插入数据

超市分店
mysql -uroot -p 
use hive

insert into market_info(market_id,market_address,start_time,end_time,market_name,create_time,update_time) values ('1000001','湖南省长沙市开福区万达广场1021号','2021-12-16','2028-12-17','大润发开福万达店','2021-12-12','2021-12-12');


insert into market_info(market_id,market_address,start_time,end_time,market_name,create_time,update_time) values ('1000002','湖南省长沙市岳麓区万达广场1021号','2021-12-16','2028-12-17','大润发岳麓万达店','2021-12-12','2021-12-12');

insert into market_info(market_id,market_address,start_time,end_time,market_name,create_time,update_time) values ('1000003','湖南省长沙市雨花区万达广场1021号','2021-12-16','2028-12-16','大润发雨花万达店','2021-12-12','2021-12-12');
商品表 - 存储过程
mysql -uroot -p 
use hive

drop procedure insert_product_info;
delimiter //
create procedure insert_product_info(type_name varchar(100),product_price varchar(100),start_time varchar(100),end_time varchar(100),create_time varchar(100),update_time varchar(100),num int)
begin
declare str char(62) default 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';
declare product_name char(100);
declare product_id int;
declare i int default 0;
while i<= num DO
-- 生成商品名称随机数
set product_name=concat("商品名称",substring(str,1+floor(rand()*61),2),substring(str,1+floor(rand()*61),3));
-- 生成商品ID随机数
set product_id = floor(rand()*1000);
set i=i+1; 
INSERT INTO `hive`.`product_info` (`product_id`, `type_name`, `supplier_phone`, `supplier_address`, `product_price`, `product_desc`, `start_time`, `end_time`, `product_name`, `create_time`, `update_time`) VALUES (product_id, type_name, '18576759590', '湖南省常德市', product_price, '产品描述', start_time, end_time, product_name, create_time, update_time);
end while; 
end;
//

# 下面这种方式调用,后面的100就是插入100条数据
mysql> call insert_product_info('食品','50','2021-12-16', '2022-12-17', '2021-12-15','2021-12-15',100) //

mysql> call insert_product_info('酒水','100','2021-12-16', '2022-12-17', '2021-12-15','2021-12-15',100) //

# 查询到各个插入成功的数据
mysql> select count(*) from product_info;//
+----------+
| count(*) |
+----------+
|      202 |
+----------+

  • 数据列表

image-20211217165223721

清单记录表 - 存储过程
mysql -uroot -p 
use hive

drop procedure insert_sale_info;
delimiter //
create procedure insert_sale_info(order_status varchar(10),market_id varchar(100),product_num int,product_id int,create_time varchar(100),update_time varchar(100),num int)
begin
declare order_id int;
declare i int default 0;
while i<= num DO
set i=i+1; 
-- 随机生成订单id
set order_id = floor(rand()*100);
INSERT INTO `hive`.`sale_info` (`order_id`, `order_status`, `market_id`, `product_num`, `product_id`, `create_time`, `update_time`) VALUES (order_id, order_status, market_id, product_num, product_id, create_time, update_time);
end while; 
end;
//

# 注意//这个分隔符,是区分存储过程的,调用存储过程注意market_idproduct_id的值,要从相应的超市分店,商品信息表中找到对应数据
mysql> call insert_sale_info('待付款','1000001',5, 221,'2021-12-15','2021-12-15',100) //
mysql> call insert_sale_info('已付款','1000002',10, 182, '2021-12-14','2021-12-14',100) //

# 查询到刚刚插入的数据
mysql> select count(*) from sale_info;//
+----------+
| count(*) |
+----------+
|      203 |
+----------+
1 row in set (0.00 sec)
  • 数据列表如下

image-20211217170539691

业务数据导入 ODS-datax

datax 环境搭建

  • 建议自己用源代码编译方式,比较稳妥
  • 下载源文件解压
wget https://github.com/alibaba/DataX/archive/master.zip
unzip DataX-master.zip 
  • 下载 maven
sudo wget --no-check-certificate  https://dlcdn.apache.org/maven/maven-3/3.8.4/binaries/apache-maven-3.8.4-bin.tar.gz

tar -zxvf apache-maven-3.8.4-bin.tar.gz
# 配置maven环境变量 
vi /etc/profile 

 export M2_HOME=/usr/local/apache-maven-3.8.4 //本地maven安装home目录
 export PATH=$PATH:$M2_HOME/bin
 # 生效环境变量设置
 source /etc/profile

image-20211221090119715

  • 配置 maven 本地仓库, 进如本地 maven 安装目录里的 conf 目录, vi settings.xml进行如下修改
 -- 设置仓库地址
 <localRepository>/usr/local/apache-maven-3.8.4/repo</localRepository>
 -- 设置阿里云镜像
<mirror>
  <id>nexus-aliyun</id>
  <mirrorOf>central</mirrorOf>
  <name>Nexus aliyun</name>
  <url>http://maven.aliyun.com/nexus/content/groups/public</url>
</mirror>
  • 最后查看 maven 安装结果 maven -version
[root@VM-24-13-centos resp]# mvn -version
Apache Maven 3.8.4 (9b656c72d54e5bacbed989b64718c159fe39b537)
Maven home: /usr/local/apache-maven-3.8.4
Java version: 1.8.0_311, vendor: Oracle Corporation, runtime: /usr/local/jdk1.8.0_311/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "linux", version: "3.10.0-1160.11.1.el7.x86_64", arch: "amd64", family: "unix"

  • 修改 datax 的目录中的 pom.xml 中的内容
<mysql.driver.version>8.0.26</mysql.driver.version>

<!-- reader -->
    <module>mysqlreader</module>      
    <module>hdfsreader</module>
    <module>streamreader</module>

     <!-- writer -->
    <module>mysqlwriter</module>
   <module>hdfswriter</module>
   <module>streamwriter</module>
     <!-- common support module -->
     <module>plugin-rdbms-util</module>
     <module>plugin-unstructured-storage-util</module>
     <module>hbase20xsqlreader</module>
     <module>hbase20xsqlwriter</module>
     <module>kuduwriter</module>
  • hdfswrite 目录下面的 pom.xml 修改 hive 和 hadoop 版本
<properties>
      <hive.version>3.1.2</hive.version>
      <hadoop.version>3.0.3</hadoop.version>
  </properties>
  • 在 datax 的目录执行编译命令
mvn -U clean package assembly:assembly -Dmaven.test.skip=true
WARNING] Assembly file: /usr/local/DataX-master/target/datax is not a regular file (it may be a directory). It cannot be attached to the project build for installation or deployment.
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary for datax-all 0.0.1-SNAPSHOT:
[INFO] kuduwriter ......................................... SUCCESS [  2.148 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS

  • 把 target 目录中的 datax.tar.gz 移动到指定目录,解压
[root@VM-24-13-centos target]# cp datax.tar.gz /usr/local/
cd /usr/local/
tar -zxvf datax.tar.gz
数据超市导入 ods 表
  • 创建分区信息,手动创建分区路径

  • 不过奇怪的是我用下面命令的方式创建,用 datax 导入报错找不到创建的分区

hdfs dfs -mkdir -p /user/hive/warehouse/hive.db/ods_market_info/dt=2021-12-21
  • 用 sql 原生语句 insert 插入一条数据后,重新 datax 导入就成功了
insert into ods_market_info partition(dt = '2021-12-21')
# 切换用户
su hadoop
# 进入到hive模式
hive
# 使用hive数据库
use hive;
# 手动插入分区信息内容
hive>insert into ods_market_info partition(dt = '2021-12-21') values ('111','222','33','44','55','66','77');
# 查看到刚刚插入的信息
hive>select * from ods_market_info;
# 新增完后,可以删除表中数据,也可不删
hive>truncate table ods_market_info;
hive>exit;
  • 查看到分区信息
[hadoop@VM-24-13-centos root]$ hadoop fs -ls /user/hive/warehouse/hive.db/ods_market_info/
drwxr-xr-x   - hadoop supergroup          0 2021-12-22 15:57 /user/hive/warehouse/hive.db/ods_market_info/dt=2021-12-21
drwxr-xr-x   - hadoop supergroup          0 2021-12-22 15:57 /user/hive/warehouse/hive.db/ods_market_info/dt=2021-12-22
  • 在 datax 的 job 目录编写一个 mysql_hive_ods_market_info.json 文件,同步超市分店配置用
[root@VM-24-13-centos job]# ls
job.json  mysql_hive_ods_market_info.json
  • 编辑 mysql_hive_ods_market_info.json 文件
{
  "job": {
      "setting": {
          "speed": {
              "channel": 1
          }
      },
      "content": [{
           "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "column": [
                            "market_id",
                          "market_address",
                          "start_time",
                          "end_time",
                          "market_name",
                          "create_time",
                          "update_time"                           
                        ],
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://localhost:3306/hive"
                                ],
                                "table": [
                                    "market_info"
                                ]
                            }
                        ],
                        "password": "hive1234",
                        "username": "hive"
                    }
                },

          "writer": {
              "name": "hdfswriter",
              "parameter": {
                  "defaultFS": "hdfs://localhost:9000",
                  "fileType": "text",
                  "path": "/user/hive/warehouse/hive.db/ods_market_info/dt=2021-12-21",
                  "fileName": "ods_market_info",
                  "column": [{
                          "name": "market_id",
                          "type": "string"
                      },
                      {
                          "name": "market_address",
                          "type": "string"
                      },
                      {
                          "name": "start_time",
                          "type": "string"
                      },
                      {
                          "name": "end_time",
                          "type": "string"
                      },
                      {
                          "name": "market_name",
                          "type": "string"
                      },
                      {
                          "name": "create_time",
                          "type": "string"
                      },
                      {
                          "name": "update_time",
                          "type": "string"
                      }
                  ],
                  "writeMode": "append",
                  "fieldDelimiter": "\t",
              }
          }
      }]
  }
}

hive> show create table hive.ods_market_info;
.....
LOCATION
'hdfs://localhost:9000/user/hive/warehouse/hive.db/ods_market_info'
....

执行命令后在结果中可以看到 LOCATOIN,就是 hive 在 hdfs 中的存储目录。填写到 writer 下的 path 中,dt 就是刚刚创建的分区

  • 运行 datax 命令
# 回到root用户
[hadoop@VM-24-13-centos root]$ su
[root@VM-24-13-centos ~]# cd /usr/local/datax/bin/
# DHADOOP_USER_NAME一定要用hadoop用户,用其他用户会报错没有权限
[root@VM-24-13-centos bin]# python datax.py -p "-DHADOOP_USER_NAME=hadoop" ../job/mysql_hive_ods_market_info.json

image-20211222172711034

  • 查看 hive 中的超市表中是否有数据
[root@VM-24-13-centos bin]# su hadoop
[hadoop@VM-24-13-centos bin]$ hive
hive> select * from hive.ods_market_info;
000001 湖南省长沙市开福区万达广场1021号        2021-12-16 00:00:00     2028-12-16 23:59:59     大润发开福万达店        2021-12-12 16:00:00     2021-12-12 16:00:00   2021-12-21
1000002 湖南省长沙市岳麓万达广场1021号  2021-12-16 00:00:00     2028-12-16 23:59:59     大润发岳麓万达店        2021-12-12 16:00:00     2021-12-12 16:00:00  2021-12-21
商品信息导入 ods 表
# 切换用户
su hadoop
# 进入到hive模式
hive
# 使用hive数据库
use hive;
# 手动插入分区信息内容
hive>insert into ods_product_info partition(dt = '2021-12-21') VALUES (11, '222', '18576759590', '湖南省常德市', '222', '产品描述', '333', '444', '555', '666', '77');
# 查看到刚刚插入的信息
hive>select * from ods_product_info;
# 新增完后,可以删除表中数据,也可不删
hive>truncate table ods_product_info;
hive>exit;
  • 查看到分区信息
[hadoop@VM-24-13-centos root]$ hadoop fs -ls /user/hive/warehouse/hive.db/ods_product_info/
drwxr-xr-x   - hadoop supergroup          0 2021-12-23 09:31 /user/hive/warehouse/hive.db/ods_product_info/dt=2021-12-21
  • 在 datax 的 job 目录编写一个 mysql_hive_ods_product_info.json 文件,同步超市分店配置用
[root@VM-24-13-centos job]# ls
-rwxrwxrwx 1 root root 1587 Dec 21 18:05 job.json
-rw-r--r-- 1 root root 1861 Dec 22 15:54 mysql_hive_ods_market_info.json
-rw-r--r-- 1 root root 1861 Dec 23 09:36 mysql_hive_ods_product_info.json
  • 编辑 mysql_hive_ods_productinfo.json 文件
{
    "job": {
        "setting": {
            "speed": {
                "channel": 1
            }
        },
        "content": [{
             "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "column": [
                            "product_id",
                            "type_name",
                            "supplier_phone",
                            "supplier_address",
                            "product_price",
                            "product_desc",
                            "start_time",
                            "end_time",
                            "product_name",
                            "create_time",
                            "update_time",
                        ],
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://localhost:3306/hive"
                                ],
                                "table": [
                                    "product_info"
                                ]
                            }
                        ],
                        "password": "hive1234",
                        "username": "hive"
                    }
                },

            "writer": {
                "name": "hdfswriter",
                "parameter": {
                    "defaultFS": "hdfs://localhost:9000",
                    "fileType": "text",
                    "path": "/user/hive/warehouse/hive.db/ods_product_info/dt=2021-12-21",
                    "fileName": "ods_product_info",
                    "column": [{
                            "name": "product_id",
                            "type": "int"
                        },
                        {
                            "name": "type_name",
                            "type": "string"
                        },
                        {
                            "name": "supplier_phone",
                            "type": "string"
                        },
                        {
                            "name": "supplier_address",
                            "type": "string"
                        },
                        {
                            "name": "product_price",
                            "type": "string"
                        },
                        {
                            "name": "product_desc",
                            "type": "string"
                        },
                        {
                            "name": "start_time",
                            "type": "string"
                        },
                        {
                            "name": "end_time",
                            "type": "string"
                        },

                        {
                            "name": "product_name",
                            "type": "string"
                        },

                        {
                            "name": "create_time",
                            "type": "string"
                        },
                        {
                            "name": "update_time",
                            "type": "string"
                        }
                    ],
                    "writeMode": "append",
                    "fieldDelimiter": "\t",
                }
            }
        }]
    }
}
  • 运行 datax 命令
# 回到root用户
[hadoop@VM-24-13-centos root]$ su
[root@VM-24-13-centos ~]# cd /usr/local/datax/bin/
# DHADOOP_USER_NAME一定要用hadoop用户,用其他用户会报错没有权限
[root@VM-24-13-centos bin]# python datax.py -p "-DHADOOP_USER_NAME=hadoop" ../job/mysql_hive_ods_product_info.json

任务启动时刻                    : 2021-12-23 10:30:52
任务结束时刻                    : 2021-12-23 10:31:05
任务总计耗时                    :                 12s
任务平均流量                    :            2.22KB/s
记录写入速度                    :             20rec/s
读出记录总数                    :                 201
读写失败总数                    :                   0

  • 查看 hive 中的商品表中是否有数据
su hadoop
hive
use hive;
hive> select count(product_id) from ods_product_info;
Total MapReduce CPU Time Spent: 0 msec
OK
201
Time taken: 2.154 seconds, Fetched: 1 row(s)

销售事实导入 ods 表
# 切换用户
su hadoop
# 进入到hive模式
hive
# 使用hive数据库
use hive;
# 手动插入分区信息内容
hive>insert into ods_sale_info partition(dt = '2021-12-21') values (1, '222', '333', 4, 55, '666', '77');
# 查看到刚刚插入的信息
hive>select * from ods_sale_info;
# 新增完后,可以删除表中数据,也可不删
hive>truncate table ods_sale_info;
hive>exit;
  • 查看到分区信息
[hadoop@VM-24-13-centos root]$ hadoop fs -ls /user/hive/warehouse/hive.db/ods_sale_info/
drwxr-xr-x   - hadoop supergroup          0 2021-12-23 11:09 /user/hive/warehouse/hive.db/ods_sale_info/dt=2021-12-21
  • 在 datax 的 job 目录编写一个 mysql_hive_ods_sale_info.json 文件,同步销售事实表配置用
[root@VM-24-13-centos job]# ls
-rwxrwxrwx 1 root root 1587 Dec 21 18:05 job.json
-rw-r--r-- 1 root root 1861 Dec 22 15:54 mysql_hive_ods_market_info.json
-rw-r--r-- 1 root root 2267 Dec 23 10:28 mysql_hive_ods_product_info.json
-rw-r--r-- 1 root root 2267 Dec 23 11:06 mysql_hive_ods_sale_info.json

  • 编辑 mysql_hive_ods_productinfo.json 文件
{
    "job": {
        "setting": {
            "speed": {
                "channel": 1
            }
        },
        "content": [{
             "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "column": [
                            "order_id",
                            "order_status",
                            "market_id",
                            "product_num",
                            "product_id",
                            "create_time",
                            "update_time"
                        ],
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://localhost:3306/hive"
                                ],
                                "table": [
                                    "sale_info"
                                ]
                            }
                        ],
                        "password": "hive1234",
                        "username": "hive"
                    }
                },

            "writer": {
                "name": "hdfswriter",
                "parameter": {
                    "defaultFS": "hdfs://localhost:9000",
                    "fileType": "text",
                    "path": "/user/hive/warehouse/hive.db/ods_sale_info/dt=2021-12-21",
                    "fileName": "ods_sale_info",
                    "column": [{
                            "name": "order_id",
                            "type": "string"
                        },
                        {
                            "name": "order_status",
                            "type": "string"
                        },
                        {
                            "name": "market_id",
                            "type": "string"
                        },
                        {
                            "name": "product_num",
                            "type": "int"
                        },
                        {
                            "name": "product_id",
                            "type": "int"
                        },

                        {
                            "name": "create_time",
                            "type": "string"
                        },
                        {
                            "name": "update_time",
                            "type": "string"
                        }
                    ],
                    "writeMode": "append",
                    "fieldDelimiter": "\t",
                }
            }
        }]
    }
}
  • 运行 datax
# 回到root用户
[hadoop@VM-24-13-centos root]$ su
[root@VM-24-13-centos ~]# cd /usr/local/datax/bin/
# DHADOOP_USER_NAME一定要用hadoop用户,用其他用户会报错没有权限
[root@VM-24-13-centos bin]# python datax.py -p "-DHADOOP_USER_NAME=hadoop" ../job/mysql_hive_ods_sale_info.json


任务启动时刻                    : 2021-12-23 11:17:21
任务结束时刻                    : 2021-12-23 11:17:34
任务总计耗时                    :                 12s
任务平均流量                    :            1.07KB/s
记录写入速度                    :             20rec/s
读出记录总数                    :                 202
读写失败总数                    :                   0

  • 查看 hive 中的销售事实表是否有数据
su hadoop
hive
use hive;
hive> select count(order_id) from ods_sale_info;

Stage-Stage-1:  HDFS Read: 27232 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
202
  • 再次导入一次数据,造成重复的脏数据,为下一步数据清洗例子做准备
[root@VM-24-13-centos bin]# python datax.py -p "-DHADOOP_USER_NAME=hadoop" ../job/mysql_hive_ods_sale_info.json

  • 查看 hive 中的销售事实表存在了 404 条数据,有一半重复的
su hadoop
hive
use hive;
hive> select count(order_id) from ods_sale_info;

Stage-Stage-1:  HDFS Read: 27232 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
404

数据清洗

  • 在业务数据导入到 ods 层时,可能一些误操作,脏数据等,需要对 ods 层的数据进行清洗处理,本次就以 ods_sale_info 表中去重重复的 order_id
su hadoop
hive
use hive;

hive>drop table if exists tmp_ods_to_dwd_sale_info;
create table tmp_ods_to_dwd_sale_info
as select a.order_id,a.order_status,a.market_id,a.product_num,a.product_id,a.create_time,a.update_time from
(select order_id,order_status,market_id,product_num,product_id,create_time,update_time, ROW_NUMBER() OVER(partition by order_id order BY create_time DESC) rn FROM ods_sale_info) a
WHERE a.rn=1;

# 查看到的只有85条数据
hive> select count(*) from  tmp_ods_to_dwd_sale_info;
OK
85

数据明细层 DWD

  • 数据清洗完毕后,把 ODS 层数据导入到 OWD 层

数据仓库建模

  • 在数据仓库层,采用星形模式创建超市分店维度表、商品维度表、日期维度表和销售事实表

维度建模

# 切换到hadoop用户
su hadoop
# 进入到hive
hive

-- 创建超市分维度表
DROP TABLE IF EXISTS dw_dim_market_info;
create table dw_dim_market_info(
market_id string comment '超市分店编号',
market_address string comment '超市分店地址',
effective_date string comment '有效期起始时间',
expriry_date string comment '有效期终止时间',
market_name string comment '超市分店名称'
) comment '创建超市分维度表'
partitioned by(dt string)
row format delimited fields terminated by '\t';


--创建商品维度表
DROP TABLE IF EXISTS dw_dim_product_info;
CREATE TABLE dw_dim_product_info(
product_id int comment '商品id',
type_name string comment '类别名',
supplier_phone string comment '供应商手机号',
supplier_address string comment '供应商地址',
product_price string comment '商品价格',
product_desc string comment '商品说明',
effective_date string comment '有效期起始时间',
expriry_date string comment '有效期终止时间',
product_name string comment '商品名称'
) comment '商品维度表'
partitioned by(dt string)
row format delimited fields terminated by '\t';

--创建日期维度表
DROP TABLE IF EXISTS dw_dim_date_info;
CREATE TABLE dw_dim_date_info( 
date_id string comment '日期id',
year_value string comment '年', 
month_value string comment'月',
day_value string comment '日',
date_value string comment '年-月-日',
is_weekend string comment '是否周末', -- 0表示非周末,1表示周末
day_of_week string comment '一周中的周几'
) comment '日期维度表'
PARTITIONED BY (dt string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

--创建销售事实表
DROP TABLE IF EXISTS dwd_sale_fact;
CREATE TABLE dwd_sale_fact( 
order_id string comment '清单号',
order_status string comment '清单状态', 
market_id string comment' 超市分店编号',
date_id string comment '日期id',
product_num int comment '商品数量',
product_id int comment '商品id',
create_time string comment '创建时间',
update_time string comment '更新时间'
) comment '销售事实表'
PARTITIONED BY (dt string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';




# 查看到新建成功的表
hive> show tables;
OK
course
dw_dim_date_info
dw_dim_market_info
dw_dim_product_info
dwd_sale_fact
ods_market_info
ods_product_info
ods_sale_info
stu
stu1
tmp_ods_to_dwd_sale_info

导入 ODS 层数据

  • 把数据接入层(ODS)导入到维度表中
日期维度表
  • 初始化一些测试数据,注意 date_value 这个字段的值,需要和tmp_ods_to_dwd_sale_info中的create_time有关联关系,要造一些相等条件的数据
su hadoop
hive
hive>use hive;
hive>insert into dw_dim_date_info partition(dt = '2021-12-21') VALUES ('2021122101', '2021', '12','15','2021-12-15', '0', '51');

hive>insert into dw_dim_date_info partition(dt = '2021-12-21') VALUES ('2021122102', '2021', '12', '24','2021-12-24', '0', '51');

hive>insert into dw_dim_date_info partition(dt = '2021-12-21') VALUES ('2021122103', '2021', '12', '25','2021-12-25', '1', '51');


hive> select * from dw_dim_date_info;
OK
2021122101      2021    12      15      2021-12-15      0       51      2021-12-21
2021122102      2021    12      24      2021-12-24      0       51      2021-12-21
2021122103      2021    12      25      2021-12-25      1       51      2021-12-21

超市维度表
  • ods_market_info 表数据插入
  • 此次实例中,好像没有用到
hive>insert into dw_dim_market_info partition(dt = '2021-12-21') select market_id,market_address,market_name,start_time as effective_date,end_time as expiry_date
from ods_market_info;


hive> select * from dw_dim_market_info;
OK
1000001 湖南省长沙市开福区万达广场1021        大润发开福万达店        2021-12-16      2028-12-17      2021-12-21
1000002 湖南省长沙市岳麓区万达广场1021        大润发岳麓万达店        2021-12-16      2028-12-17      2021-12-21
1000003 湖南省长沙市雨花区万达广场1021        大润发雨花万达店        2021-12-16      2028-12-16      2021-12-21
商品维度表
  • ods_product_info 表数据插入
  • 此次实例中,好像没有用到
hive>insert into dw_dim_product_info partition(dt = '2021-12-21') select product_id,product_name,type_name,supplier_phone,supplier_address,product_price,product_desc,start_time as effective_date,end_time as expiry_date
from ods_product_info;

hive> select * from dw_dim_product_info;
OK
221     商品名称78ABC   食品    18576759590     湖南省常德市    50      产品描述        2021-12-16      2022-12-17      2021-12-21
545     商品名称XYyzA   食品    18576759590     湖南省常德市    50      产品描述        2021-12-16      2022-12-17      2021-12-21
639     商品名称GHdef   食品    18576759590     湖南省常德市    50      产品描述        2021-12-16      2022-12-17      2021-12-21
459     商品名称cdtuv   食品    18576759590     湖南省常德市    50      产品描述        2021-12-16      2022-12-17      2021-12-21


销售事实表
  • tmp_ods_to_dwd_sale_info表是上述处理重复销售清单记录表的过滤后的临时表
hive>insert into dwd_sale_fact partition(dt = '2021-12-21') select a.order_id,a.order_status,a.market_id,b.date_id,a.product_num,a.product_id,a.create_time,a.update_time
from tmp_ods_to_dwd_sale_info a
inner join dw_dim_date_info b
on a.create_time=b.date_value;

#  查询到2021-12-15的关联数据
hive> select * from dwd_sale_fact;
OK
11      待付款  1000001 2021122101      5       221     2021-12-15      2021-12-15      2021-12-21
12      待付款  1000001 2021122101      5       221     2021-12-15      2021-12-15      2021-12-21
14      待付款  1000001 2021122101      5       221     2021-12-15      2021-12-15      2021-12-21
16      待付款  1000001 2021122101      5       221     2021-12-15      2021-12-15      2021-12-21
17      待付款  1000001 2021122101      5       221     2021-12-15      2021-12-15      2021-12-21
20      待付款  1000001 2021122101      5       221     2021-12-15      2021-12-15      2021-12-21
....

数据汇总层 DWS

  • 由于我们要统计商品 A 的销售量,以及商品 A 的购买比例,因此在数据汇总层,对销售数据按照清单号进行汇总,并添加 include_product_a 字段,用于表示该清单是否商品 A(本实例中的商品 id 为 221),处理过程如下:
-- 创建DWS层清单记录表
drop table if exists dws_order_info;
create table dws_order_info (
order_id string comment '清单号',
order_status string comment '清单状态', 
market_id string comment' 超市分店编号',
include_product_a int comment '是否包括商品A',
date_id string comment '日期id',
a_num int comment '商品A数量',
product_info string comment '商品信息',
create_time string comment '创建时间',
update_time string comment '更新时间'
) comment '清单记录表'
PARTITIONED BY (dt string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

-- 创建中间表,添加is_product_a字段
drop table if exists tmp_dwd_to_dws_order_info;
create table tmp_dwd_to_dws_order_info as select 
order_id,order_status,market_id,date_id,
Case 
when product_id=221 then 1
else 0
end as is_product_a, -- 是否为商品A
case 
when product_id=221 then product_num
else 0
end as a_num, -- 商品A的数量
product_id,
product_num,
create_time,
update_time
from dwd_sale_fact;

# 查询到以及过滤的product_id221的清单数据
hive> select * from tmp_dwd_to_dws_order_info;
OK
11      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15
12      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15
14      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15
16      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15
17      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15
20      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15
22      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15
23      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15
24      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15
25      待付款  1000001 2021122101      1       5       221     5       2021-12-15      2021-12-15



-- 按照清单号进行清单数据汇总
hive>insert into dws_order_info partition(dt = '2021-12-21')
select order_id,order_status,market_id,date_id,
case
when sum(is_product_a)>0 then 1
else 0
end as include_product_a,
sum(a_num) as a_num,
concat_ws('_',collect_list(cast(product_id as string)),collect_list(cast(product_num as string))) as product_info,
create_time,update_time
from tmp_dwd_to_dws_order_info group by order_id,order_status,market_id,date_id,create_time,update_time;
hive> select * from dws_order_info;
OK
11      待付款  1000001 2021122101      1       5       221_5   2021-12-15      2021-12-15      2021-12-21
12      待付款  1000001 2021122101      1       5       221_5   2021-12-15      2021-12-15      2021-12-21
14      待付款  1000001 2021122101      1       5       221_5   2021-12-15      2021-12-15      2021-12-21
16      待付款  1000001 2021122101      1       5       221_5   2021-12-15      2021-12-15      2021-12-21
17      待付款  1000001 2021122101      1       5       221_5   2021-12-15      2021-12-15      2021-12-21
20      待付款  1000001 2021122101      1       5       221_5   2021-12-15      2021-12-15      2021-12-21

数据集市层 DWM

  • 在数据集市层,需要对相关指标进行聚合计算,处理过程如下。
  • 此处商品 A 的 id 为 221
drop table if exists dwn_order_info_by_day;
create table dwn_order_info_by_day
as select
count(distinct c.order_id) as consumption_num, -- 商品A销售清单
sum(c.a_num) as day_num, -- 商品A消费总数
sum(c.include_product_a)/count(distinct c.order_id) as buy_a_rate -- 购买商品A的消费比例
from
(
select 
a.order_id as order_id,
a.a_num as a_num,
a.include_product_a as include_product_a,
b.year_value as year_value,
b.month_value as month_value,
b.day_value as day_value 
from dws_order_info a 
left join dw_dim_date_info b on a.date_id=b.date_id) c 
group by c.day_value;

-- 查询到商品A的购买数据记录
hive> select * from dwn_order_info_by_day;
OK
62      310     2.021122101E9
Time taken: 0.098 seconds, Fetched: 1 row(s)

总结

  • 写这篇笔记差不多用了半个多月时间,后续实践内容,会更具书中理论知识或者自己总结来写,比如现在正在写 Flink+zk+python+kafka 实时读取日志实践功能,时间肯定也不短,毕竟涉及到知识点比较多,加上自身基础不好
  • 有兴趣一起学习的话,可以持续关注我笔记
如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!
共收到 2 条回复 时间 点赞

顶一顶,数仓测试这块与以往系统测试在测试面、测试流程上截然不同,我个人的感觉是在功能测试和数据分析上需要一定的平衡能力,要不然在陷在数仓无穷无尽的数据优化测试中,且测试本身也没有成就感。

仅楼主可见
测试小书童 初入大数据测试,求问怎么入门 中提及了此贴 10月01日 11:38
需要 登录 后方可回复, 如果你还没有账号请点击这里 注册