截至目前(2023 年),Java8 发布至今已有 9 年,2018年9月25日,Oracle 发布了 Java11,这是 Java8 之后的首个 LTS 版本。那么从 JDK8 到 JDK11,到底带来了哪些特性呢?值得我们升级吗?而且升级过程会遇到哪些问题呢?带着这些问题,本篇文章将带来完整的 JDK8 升级 JDK11 最全实践。
1)性能提升
更好的垃圾收机制、更快的类加载器, 加快应用程序的运行速度。综合评估,从 Java 8 升级到 Java 11,G1GC 平均速度提升 16.1%,ParallelGC 为 4.5%(基于 OptaPlanner 的用例基准测试表明)
2)特性和改进
局部变类型推断、新的 API、HTTP/2 客户端、Lambda 表达式的新特性等,这些新特性可以提高开发效率。
3)支持最新的技术和框架
许多新的技术和框架已经或即将开始依赖于 JDK11 或以上版本,升级后可以保证应用程序能够分利用这些新的技术和框架。
4)长期支持版本
JDK11 是 Oracle 官方发布的一个长期支持(LTS),意味着它将获得长期的更新和支持,有助于保持用程序的稳定性和可靠性。
5)行业趋势
数据来自 New Relic 在 2023 年 1 月发布的 Java 生态报告,从下图可以看出:
先给出结论:
我在 JDOS 平台上选择了不同配置的机器(2C4G、4C8G、8C16G),并分别使用 JDK8 和 JDK11 进行部署和压测。
整个压测过程限时 60 分钟,用 180 个虚拟用户并发请求一个接口,每次接口请求都创建 512Kb 的数据。最终产出不同 GC 回收器的各项指标数据,来分析 GC 的性能提升效果。
以下是压测的性能情况:
* 上面给出的 GC 升级效果,采用的是默认的配置,没有做任何优化,只提供参考。真正的 GC 调优是个技术活,需要根据业务需求、机器配置和实际压测效果等综合评估来选出最合适的 GC 垃圾回收器。
* 不同垃圾回收器的特点:
Parallel GC - JDK 8 及以下版本的默认收集器,关注吞吐量,尝试在最小延迟的情况下尽快完成工作并提高吞吐量。
CMS - 一个老年代收集器,基于标记 - 清除算法实现,关注延迟,以最短回收停顿时间为目标
Garbage First(G1)- JDK 9 以后的默认收集器,G1 关注总体的性能,会尝试在吞吐量和延迟之间做平衡。
默认垃圾回收器改为 G1,废弃 CMS 垃圾回收器
◦ G1 特点:目标是降低应用程序的停顿时间并提高吞吐量。
引入 ZGC 垃圾回收器(可伸缩低延迟垃圾收集器) 但由于 JDK11 中 ZGC 还不够完善,推荐在 JDK17 中再使用稳定版 ZGC
◦ Full GC 的停顿不超过 10 毫秒
◦ 支持 TB 级堆内存回收
◦ 相对于 G1 吞吐量下降不超过 15%
Java9 引入了对于模块化软件支持,而 Java11 进一步扩展了这种特性。模块化让应用程序 更精简,减少对其他类库的依赖和冗余代码,提高运行效率和安全性 。
然而,目前不推荐使用模块化,因为相关组件生态还不完善,并且模块化带来的价值不够突出。具体原因请看后面章节的详细分析:新特性实践 - 模块化。
◦ 局部变量推断,引入 var 局部变量类型,允许开发人员省略通常不必要的局部变量类型初始化声明
◦ Lambda 表达式简化,内部可以使用 var
◦ 接口中可以定义私有方法,可以实现接口方法的访问控制和代码复用
◦ HTTPClient 标准化支持:强大而灵活的 HTTP 客户端 API,支持多协议(HTTP/2、WebSocket)、异步非阻塞、流操作和连接池等特性。ps:再也不需要用第三包 HttpClient 工具包
◦ 字符串方法增强:isBlank
、lines
、strip
、stripLeading
、stripTrailing
和repeat
◦ Files 增强:readString、WriteString
◦ InputStream 增强:transferTo(流快速拷贝)
◦ stream 增强,dropWhile(从集合中删除满足的)、takeWhile(从集合中获取满足的)、ofNullable
◦ 集合工厂方法:Sets.of()、List.of()、Map.of()、Map.ofEntries(),举例:List list = List.of("Java", "Python", "C++");
自从 2019 年 1 月起,Oracle JDK 后续的版本开始商用收费,所以推荐大家选择 OpenJDK11,OpenJDK 和 OracleJDK 功能上没有差异,支持免费商用。
OpenJDK11 下载地址:https://jdk.java.net/archive/
根据自身需求和机器配置选择 GC,不同 GC 的 JVM 启动参数配置:
整个升级过程还是比较简单的,除了升级 JDK 版本,实际遇到的问题如下:
升级后完成,做好单测和回归测试,推荐能做个压测验证,防止影响线上服务稳定性
Java 一直是构建大型应用程序的主流语言之一。然而随着 Java 生态系统中存在着大量库和复杂的代码块之间关系难以理清的问题,构建系统变得困难且超出了我们的理解和有效开发的范围。特别是在使用繁多的 Java 存档文件(Java Archive, JAR)时,这一问题变得更加突出。为了应对这种复杂性,模块化能够很好地管理和减少代码的复杂性。因此自 Java9 开始,引入了模块化系统。通过模块化,Java 本身也得以进行模块化改进。
模块化指的是 JAVA 平台的模块系统(Java Platform Module System),简称 JPMS。JPMS 引入一种新方式来组织和构建 Java 应用程序,它将代码分为相互独立、可复用的模块。每个块都有自己的命名空间,明确声明并控制其他模块的访问权限。这种模块化设计使得开发人员能够更好地维护复杂的应用程序,提高代码的复用性、可维护性和安全性,同时提升应用的加载速度和性能。最大的特点是可以定义模块描述符来隔离 module(Jar 包)内部类的访问权限。
模块化的几点关键说明:
1)相对于 JDK8 的变动
2)和 maven 的关系
模块化并不是要替代 maven,和 maven 本身并不冲突,maven 定义 jar 之间的依赖关系,模块化是对已经依赖的 jar 下的包进行更细粒度依赖控制
3)如何兼容旧应用
天然兼容旧应用。为了向后兼容旧项目,一些库本身并未模块化,其仍然可以作为模块在模块路径中使用,而这些库在模块路径上时会被转化为自动模块,例如:jackson-databind-1.0.0.jar 将成为自动模块 jackson.databind
1)封装和隔离,更好的访问控制
模块化允许开发者将代码和资源封装在独立的模块中。模块之间可以明确地定义公开和私有的 API,提供了更好的代码隔离性和可维护性。
ps:新业务单应用可以按照领域模型来进行多模块的划分,以避免代码腐化。简单举例单应用下存在产品.jar、订单.jar。订单依赖产品,通过模块化的限制,订单只能使用产品中明确对外暴露的类,这样就避免传统模式订单.jar 可能依赖了产品.jar 中普通的类导致代码腐化的问题,也降低后续领域服务拆分的复杂度
2)更好的可伸缩性,加载速度的提升
模块化系统使得 Java 平台更加可伸缩,通过模块化定义,可以仅加载需要的模块,从而提升加载类的效率,最终减少了应用程序的内存占用和启动时间,同时打包后的程序也更小。
3)明确的依赖关系
模块化系统要求在模块之间明确定义依赖关系。在编译或运行代码之前,模块系统会检查模块是否满足所有依赖关系,从而导致更少的运行时错误。
4)安全
在 JVM 的最深层次上执行强封装,减少 Java 运行时的攻击面,同时无法获得对敏感内部类的反射访问。
1)定义 module-a.jar
包结构如下:
com.jdt.a
person
Men.java
reflect
ReflectModel.java
module-info.java
module-info 文件内容如下:
module module.a {
//指令用于指定一个模块中哪些包下的public对外是可访问的,包括直接引入和反射使用
exports com.jdt.a.person;
// 只能被反射调用,用于指定某个包下所有的 public 类都只能在运行时可被别的模块进行反射,并且该包下的所有的类及其乘员都可以通过反射进行访问。
opens com.jdt.a.refect;
}
2)定义 module-b.jar,包的 pom 中指定依赖了 module-a
包结构如下:
com.jdt.b
test
Test.java
module-info.java
module-info 文件内容如下:
module module.b {
//依赖a下的包
requires module.a;
}
3)此时 module-b.jar,在编写编码时,会遇到如下问题
上面简单介绍了模块化的知识,具体在落地过程中,我们主要踩了以下的坑,供大家参考
1)依赖 JSF 包时无法模块化
* JSF 是京东内部使用的高性能 RPC 框架
进行模块化时,pom 中依赖了 jsf 包,模块定义如下:
module module.a {
requires fastjson;
//依赖jsf包名
requires jsf.lite;
exports com.jd.jdk.test.module;
}
此时编译报错如下:提示找不到模块:jsf.lite,但是 pom 中明明指定依赖了 jsf.lite
问题原因:
经过一系列定位研究,发现 jsf-lite 包中,/META-INF/services 下的文件 org.glassfish.jersey.internal.spi.AutoDiscoverable 里面写的类是 com.alibaba.fastjson.support.jaxrs.FastJsonAutoDiscoverable,此类并未在当前 jsf.lite 包中定义,属于 com.alibaba.fastjson 包的。
但是我们的 pom 中明明也依赖了 com.alibaba.fastjson 包,为什么模块化后,就找不到了呢?
主要原因在于模块化遇到 SPI(Service Provider Interface)时的约束:模块化时,SPI 机制要求配置中定义依赖的类必须本模块定义的,不能是其他模块的包(来自它不拥有的包),否则,此包将无法被模块化
这样也就解释了,为什么上面 jsf 无法找到 module 的问题,jsf-lite 里面设置了它不拥有的包:com.alibaba.fastjson.support.jaxrs.FastJsonAutoDiscoverable,导致 jsf-lite 包无法被自动模块化
解决方案:
1、联系 JSF 团队,升级 JSF 包,修复上面说的 FastJsonAutoDiscoverable 配置错误的问题。
2)拆包问题(模块隔离)
模块化约束:jdk9 以上,使用模块化时不支持拆分包的形式依赖
拆分包意味着两个模块包含相同的包,Java 模块系统不允许拆分包。拆分包始终是不正常的,而当使用解析可传递依赖项的构建工具(如 Maven 等)时,很容易出现同一个库的多个版本,当 Java 模块系统检测到一个包存在于模块路径上的多个模块中时,就会拒绝启动。
例如:
module-a.jar包结构定义:
com.foo.package
A.java
module-b.jar包结构定义:
com.foo.package
B.java
当 module-c 同时依赖 module-a 和 module-b 时,如上编译时会报一个错,Package com.foo.package in both module module.b and module module.a
,这就是 JAVA9 的模块隔离,要求只能从一个模块(module)中读取同一个包(package),不能跨模块读取。
解决方案:
如果在使用模块化时,遇到了拆分包问题,无论如何都是无法绕过的。即使从用户角度来看基于类路径的应用程序可以正确工作,你也最终需要处理这些问题。此时只能停用模块化或升级 jar 包,避免拆分包问题
目前不推荐使用模块化,因为相关组件生态还不完善,并且模块化带来的价值不够突出:
很多中间件都是基于 jdk8 构建的,都有可能遇到模块化兼容的问题,比如:jsf,需要 jsf 强制升级才可以使用模块化
拆包问题无法解决,比如:aws-java-sdk-s3、fluent 等。
另外听说 JDK17 的 ZGC 可以达到亚秒级停顿,但考虑到 JDK11 的 ZGC 还不是很稳定,所以本次不做测试,后面升级到 JDK17 后再给大家分享 ZGC 压测效果。
希望以上分享可以给大家带来实际的帮助。
作者:京东科技 曲振富
来源:京东云开发者社区 转载请注明来源