背景与效果

在研发流程中无论是 code review、MR 基本都绕不开 code diff 的存在,而人眼很难准确评估 diff 的影响规模。

linkediff 可以在无需编译的情况下对你的代码进行解析,指出 diff 的影响范围:

通过脑图可以看到:

他同时也生成易处理的 JSON 文件便于与其他系统(如 CI)配合。

使用

当前只支持 java 项目。

进入你自己的工程

git clone https://github.com/jacoco/jacoco
cd jacoco

执行分析

通过 docker

docker run --rm -v `pwd`:/usr/src/app williamfzc/linkediff:v0.2.1 linkediff run

常规方式

你需要安装 Python3 及 coca

pip3 install linkediff
linkediff init

你会在你的项目目录下看到 .linkediff.json 配置文件,将其中 coca_cmd 指向 coca 可执行文件 的路径即可。

linkediff run

结果

在运行完成后你可以看到一些结果文件,如 ldresult.json, ldresult.xmind。结合自身需要进一步处理即可。

设计与讨论

智能 diff 功能存在我的 TODO 里很久了,之前的设计是:

而后来偶然发现了 coca ,发现已经将第二步与第四步完成了。所以趁着休息日摸鱼把这个最小可体验版本写(拼)出来了。

这个版本可能只会被用于验证价值与试水,如果有一定使用场景再考虑具体选型与适配。当前版本自由参与,结构也非常简单,欢迎 PR 但请不要花费太多时间。欢迎各类建议。

项目地址

https://github.com/williamfzc/linkediff


↙↙↙阅读原文可查看相关链接,并与作者交流