本文首发于个人博客:https://www.cnblogs.com/hyddd/p/11175919.html

前言

在游戏测试中,音画同步测试是个难点(所谓游戏音画同步:游戏中,音效与画面的同步程度),现在一般采用人工主观判断的方式测试,但这会带来 2 个问题:

本文主要内容:

(注:上下文中,游戏默认为PC 上的 FPS 游戏音画同步默认为PC 上 FPS 游戏的音画同步

一、 音画同步测试方案

如果我们采用 实时计算 的方案,这将导致该测试对计算机有很高的要求,因为我们需要对每秒 60 张 1080P-JPEG 图片与 44100Hz-wav 音频进行科学计算。

实际上,音画同步测试对实时性并非硬核要求,而且无论计算是实时或者非实时,被测试的游戏场景音画均需留档,以备问题追查,所以,本方案使用 非实时计算。同时,引入 视频录制把 “游戏音画同步” 问题转换为 “视频音画同步” 问题

整体流程

1. 视频录制

在 PC 上,录制方案分 2 类:

(1). 硬件录制

在游戏中,把游戏 PC 机音视频流导出后,通过硬件采集卡 + 相关工具进行录制,流程如下:

硬件采集

(2). 软件录制

PC 上软件录制工具很多,本案使用:ffmpeg + “screen capture” directshow filter

  1. 安装 dshow filter: Screen Capturer Recorder

  2. 录制:ffmpeg -f dshow -framerate 30 -i video="screen-capture-recorder" -c:v h264 -r 30 -f dshow -i audio="virtual-audio-capturer" -b:a 192k -ar 44100 -ac 2 -t 5 out.mp4

(3). 对比 2 类录制方式

在音画同步测试中,画质损失对于帧特征识别影响不大,但丢帧/不能满帧录制则会引入误差,比如:

引入误差

上图中,音频起始时间:time1,特征首帧时间:frame2(time1),不能满帧录制导致 frame2 丢帧,特征首帧时间变为:frame3(time2),引入误差:∆t' = time2 - time1,60fps 游戏使用 30fps 录制,则可能引入误差 ∆t' = 0.016s。

(注:上文中,特征含义:当音频出现时,在画面中应该出现的图像特征,比如:射击时,画面出现的枪体震动...)

误差对测试的影响,将在下文讨论。

2. 计算音画同步差

音画同步差计算流程

流程核心步骤:帧特征识别音频特征识别

(1). 帧特征识别

这里,我们把 “帧特征识别” 问题转化为:在图像中寻找子图像(特征)。

问题转换后,解决方案就很明确了,可以使用 opencv 提供模板匹配处理,部分源码如下:


...

feature = cv2.imread(feature_path, 0)

for frame_path in frame_paths:      
    frame_rgb = cv2.imread(frame_path)
    frame_gray = cv2.cvtColor(frame_rgb, cv2.COLOR_BGR2GRAY)

    res = cv2.matchTemplate(frame_gray, feature, cv2.TM_CCOEFF_NORMED)
    loc = numpy.where(res >= threshold)

    if len(list(zip(*loc[::-1]))) > 0:
        index = get_frame_index(frame_path)
        T1 = index / framerate
        break

...

(2). 音频特征识别

这里,我们把 “帧特征识别” 问题转化为:在长音频(视频音频)中寻找子音频(特征音频),这里使用 “互相关” 函数处理。

需要注意的“坑”

...

src_data, s_framerate = read_wav(feature_path)
deg_data, d_framerate = read_wav(audio_path)

if s_framerate != d_framerate:
    return

n = max(len(src_data), len(deg_data))

result = numpy.correlate(src_data, deg_data, mode='full')
m = result.max().item()
m_indexs, = numpy.where(result == m)
m_index = m_indexs[0]

offset = m_index - n + 1
if offset < 0:
    offset = -offset

T2 = offset / s_framerate

...

二、 玩家对 FPS 游戏音画不同步的感知

在这部分,我们要讨论一个问题:玩家对 FPS 游戏音画不同步的感知力到底如何?探讨这个问题,可以让我们订立一个针对 FPS 游戏的音画同步标准。

1. 现有业界标准

关于音画同步,业界有 3 个标准:

其中,影响力最大的是 ITU-R BT.1359,下面将重点对 ITU-R BT.1359 进行分析。

《ITU-R BT.1359-1》是国际电信联盟于 1998 年修订,针对电视广播的音画同步标准,该标准至今仍被使用,同时应用范围也扩展到互联网直播领域。

(1). 标准值

ITU-R BT.1359-1

其中,负值表示:画前音后;正值表示:画后音前;

(2). 评测方案

评测流程

上图是电视广播简化版处理链路,每个节点均可能引入同步差。其中:

分值 含义
5 完全不可察觉
4 可察觉,但不讨厌
3 稍微讨厌
2 讨厌
1 完全无法接受

2. FPS 游戏音画不同步的感知力

(1). 场景

FPS 游戏音画场景很多,如:脚步声,敌方开枪,玩家开枪......

但玩家对不同场景的感知力并不相同,因为玩家关注点可能并不在上面:

所以,以下评测 FPS 游戏音画同步性采用:“玩家开枪” 场景

(2). 评测流程

评测流程

(3). 真实玩家交互流程

评测流程

与评测流程相比,真实交互流程是少了 1 次△ta2 的延迟。

(4). 主观评测方案

与 ITU 评测方案差异分析:

(5). 主观评测结果

音画同步差△t 的范围 (ms) 认为 “同步” 的占比
-400 ~ -450 23%
-300 ~ -350 48%
-200 ~ -250 80%
-100 ~ -150 90%
-30 ~ 30 95%
100 ~ 150 75%
200 ~ 250 47%
300 ~ 350 19%
400 ~ 450 7%
500 ~ 550 2%

(注:音画同步差△t 的范围* 表示 步骤 1~7 音画差总和的范围)*

(6). 结论

三、 参考文档


↙↙↙阅读原文可查看相关链接,并与作者交流