项目开发中,为了统一管理线程,并有效精准地进行排错,我们经常要求项目人员统一使用线程池去创建线程。因为我们是在受不了有些人动不动就去创建一个线程,使用的多了以后,一旦报错就只有一个线程报错信息,还是线程的共用信息,再加上如果你将异常吃了 (捕获后不做处理) 的情况下,这个错误。。。。em,我实在不知道去哪里排查,不然你换个人试试吧。
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
除此之外还有一个重要的参数:
/**
* If false (default), core threads stay alive even when idle.
* If true, core threads use keepAliveTime to time out waiting
* for work.
*/
private volatile boolean allowCoreThreadTimeOut;//是否允许核心线程数超时退出。
该参数有在特定的业务场景下有很大的意义。比如:你的业务只在晚上需要执行,其余时间无需执行。那么为何不把资源让出来,白天的时候,可以让其他业务占有这些资源去执行呢。
由该类图可知,Executor 执行器定义执行方法,ExecutorService 定义线程池操作的基本方法,AbstractExecutorService 定义了线程池操作的方法模板。
ThreadPoolExecutor 任务执行流程图
基本的参数校验与赋值,简单代码不过多赘述。
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
////基本的参数校验
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?
null :
AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);//将线程对象封装成RunnableFuture
execute(ftask);//任务执行
return ftask;
}
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);//将线程对象封装成RunnableFuture
execute(ftask);//任务执行
return ftask;
}
public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);//将线程对象封装成RunnableFuture
execute(ftask);//任务执行
return ftask;
}
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();//获取当前的线程池状态。单个参数,保存了线程池的状态以及线程数量
if (workerCountOf(c) < corePoolSize) { //当线程数量小于核心线程数
if (addWorker(command, true)) //直接添加任务,运行线程
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {//如果核心线程数已经满了,那么直接添加到阻塞队列。
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))//线程池不是running状态,执行拒绝策略。
reject(command);
else if (workerCountOf(recheck) == 0)//线程池线程数量不能为0,需要有一个线程对线程池的后续操作进行处理,比如关闭线程池
addWorker(null, false);
}
else if (!addWorker(command, false))//当核心线程与阻塞队列都满了的时候,直接添加任务到非核心线程运行。添加失败直接执行拒绝策略
reject(command);
}
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS; //运行状态 正常执行任务
private static final int SHUTDOWN = 0 << COUNT_BITS; //关闭线程池,不再接收新任务
private static final int STOP = 1 << COUNT_BITS; //关闭线程池,所有任务停止
private static final int TIDYING = 2 << COUNT_BITS; //中间状态
private static final int TERMINATED = 3 << COUNT_BITS; //线程池已经关闭
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();//获取ctl的快照保存在栈上
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && //如果线程池已经关闭,或者(当前线程池关闭状态当前任务是空且当前工作队列不为空)不满足的情况下直接返回
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))//CAS修改线程池ctl变量,增加线程数
break retry; //添加成功直接退出
c = ctl.get(); // 添加不成功,为了保证多线程运行的安全性,重新获取
if (runStateOf(c) != rs)//当前线程池状态发生改变
continue retry; //直接重新运行retry循环体
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask); //生成自定义的线程woker
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;//这个代码没有意义,mainLock定义的变量为final。可以直接使用
mainLock.lock();//添加work使用锁,保证添加任务的原子性。
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN || //线程池处于running状态
(rs == SHUTDOWN && firstTask == null)) {//线程池处于showdown状态但是firstTask为空。
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)//保存当前线程池中线程的最大数量
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {//添加成功,运行线程
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)//线程启动失败
addWorkerFailed(w);//移除work,减少线程数量
}
return workerStarted;
}
t.start() 执行线程任务
//Worker类中实际执行任务的方法
public void run() {
runWorker(this);
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts //将原始的线程状态为-1修改为0,后续通过getState()>=0获取线程是否已经运行的状态,允许线程中断。-1默认为初始化,此处需要进行处理
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {//task不等于空直接运行,task等于空从workerQueue阻塞队列获取任务
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||//线程池运行状态大于等于STOP
(Thread.interrupted() && //线程是否已经被中断了
runStateAtLeast(ctl.get(), STOP))) &&//鲜橙汁运行状态大于等于STOP
!wt.isInterrupted())//判断任务的线程如果没有被中断
wt.interrupt();//中断当前任务线程
try {
beforeExecute(wt, task);//钩子函数,实际任务运行之前做处理
Throwable thrown = null;
try {
task.run();//执行实际任务代码
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);//钩子函数,实际任务运行之后做处理
}
} finally {
task = null;//将任务置空
w.completedTasks++;//任务完成数加1
w.unlock();
}
}
completedAbruptly = false;//执行过程中是否发成异常
} finally {
processWorkerExit(w, completedAbruptly);
}
}
//执行任务退出操作
private void processWorkerExit(Worker w, boolean completedAbruptly) {
if (completedAbruptly) // 如果有异常中断导致任务结束
decrementWorkerCount();//将线程数量减1
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;//完成的任务数量累加
workers.remove(w);//从workers的任务集合中移除当前任务
} finally {
mainLock.unlock();
}
tryTerminate();//尝试关闭线程池
int c = ctl.get();//获取当前线程池的最新状态
if (runStateLessThan(c, STOP)) {//如果当前任务状态小于STOP
if (!completedAbruptly) {//当前任务执行无异常发生
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;//根据allowCoreThreadTimeOut参数获取最小的线程数量
if (min == 0 && ! workQueue.isEmpty())//如果核心线程允许退出,并且工作队列不为空
min = 1;//设置最小值为1,因为最后需要有线程去执行线程池的后续处理,所有线程都没了,后续线程池退出无线程处理
if (workerCountOf(c) >= min)//如果工作的线程数量大于等最小值
return; // replacement not needed 直接返回
}
addWorker(null, false);//如果当前线程数已经小于最小线程数,那么需要保证最小线程数在运行,所以需要有保证线程池的正常运行,添加一个空任务。
}
}
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();//获取当前线程池状态
int rs = runStateOf(c);//获取当前运行状态
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {//如果线程池状态大于等于SHUTDOWN并且(线程数量大于等于STOP或者工作队列为空)
decrementWorkerCount();//将线程池中线程数量减1
return null;
}
int wc = workerCountOf(c);//获取当前线程池的线程数量
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;//判断是否运行核心线程数超时,判断是否需要超时机制
if ((wc > maximumPoolSize || (timed && timedOut))//工作线程大于最大线程池数量或者允许超时并且有超时的情况
&& (wc > 1 || workQueue.isEmpty())) {//并且线程池线程数量大于1或者阻塞队列为空
if (compareAndDecrementWorkerCount(c))//CAS操作将线程池数量减1
return null;//返回空
continue;//CAS失败继续
}
try {
Runnable r = timed ?//允许超时从队列中拿任务并等待keepAliveTime时间
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();阻塞等待
if (r != null)//获取的任务不为空
return r;//直接返回
timedOut = true;//如果为空,超时标志位为true
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();//获取锁
try {
if (w != null)//work不是空
workers.remove(w);//直接从workers中移除当前任务
decrementWorkerCount();//加个ctl中的woker数量减少
tryTerminate();//如果线程池已经是showdown状态,尝试让线程池停止。多线程协作的函数
} finally {
mainLock.unlock();
}
}
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();//检查关闭权限,可以忽略
advanceRunState(SHUTDOWN);//线程池状态递进,由running变为shutdown
interruptIdleWorkers();//中断所有空闲线程
onShutdown(); // hook for ScheduledThreadPoolExecutor钩子函数,调度线程池使用
} finally {
mainLock.unlock();
}
tryTerminate();//尝试将线程池关闭。
}
private void advanceRunState(int targetState) {
for (;;) {
int c = ctl.get();//获取当前的线程状态
if (runStateAtLeast(c, targetState) ||//当前状态已经是大于等于shutdown直接退出
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))//cas操作将线程状态改为targetState。
break;
}
}
private void interruptIdleWorkers() {
interruptIdleWorkers(false);
}
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();//获取锁
try {
for (Worker w : workers) {//遍历works中所有的工作任务
Thread t = w.thread;
if (!t.isInterrupted() && w.tryLock()) {//如果没有被中断过,并且可以获得锁,证明属于空闲线程
try {
t.interrupt();//将线程中断,打上中断标志位
} catch (SecurityException ignore) {
} finally {
w.unlock();//解锁
}
}
if (onlyOne)//只中断一个线程标识
break;
}
} finally {
mainLock.unlock();
}
}
public List<Runnable> shutdownNow() {
List<Runnable> tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();//权限检查
advanceRunState(STOP);//状态递进 详细方法见上面
interruptWorkers();//中断所有启动的work线程
tasks = drainQueue();//将所有未执行的任务出队保存
} finally {
mainLock.unlock();
}
tryTerminate();//尝试关闭线程池
return tasks;
}
private void interruptWorkers() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();//获取锁
try {
for (Worker w : workers)//遍历所有woker进行处理
w.interruptIfStarted();
} finally {
mainLock.unlock();
}
}
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {//当前work的状态大于0并且线程不为空且线程未被中断
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
使用getState() >= 0表示当前线程已经启动,runWorker方法中会将其状态从-1改变。证明线程已经启动
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
//标准的入队和出队功能不做过多注释
private List<Runnable> drainQueue() {
BlockingQueue<Runnable> q = workQueue;
ArrayList<Runnable> taskList = new ArrayList<Runnable>();
q.drainTo(taskList);
if (!q.isEmpty()) {
for (Runnable r : q.toArray(new Runnable[0])) {
if (q.remove(r))
taskList.add(r);
}
}
return taskList;
}
final void tryTerminate() {
for (;;) {
int c = ctl.get();//获取当前线程状态ctl
if (isRunning(c) ||//线程池正在运行
runStateAtLeast(c, TIDYING) ||//线程池状态大于等于TIDYING,有其他线程已经改变线程池状态为TIDYING或者TERMINATED了
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))//线程池状态等于shutdown并且工作队列不为空。
return;//以上三种情况线程池无法关闭,需要继续处理
if (workerCountOf(c) != 0) { // Eligible to terminate//当前工作线程数量不等于0
interruptIdleWorkers(ONLY_ONE);//中断线程且只中断一个
return;
}
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {//cas操作将线程池状态置为TIDYING
try {
terminated();//线程池终止
} finally {
ctl.set(ctlOf(TERMINATED, 0));//设置线程池状态为TERMINATED
termination.signalAll();//信号唤醒所有等待线程
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}
线程池的运用在项目中已经成为一种常态,作为一个开发人员最重要的了解其背后的设计原理以及流程,更好地运用线程池,方便提升项目程序的性能以及排查错误。在阅读对应的线程池源码时,我们只局限于单线程的思维,更多的是要去考虑当多线程并发执行时的临界条件。了解设计者的设计初衷、以及设计意图,能让你更好地在项目中运用并设计符合自己项目的线程池。以上是我个人对于线程池 ThreadPoolExecutor 的理解,不足之处,请多多指教。